Distributive lattices, polyhedra, and generalized flows

نویسندگان

  • Stefan Felsner
  • Kolja B. Knauer
چکیده

AD-polyhedron is a polyhedron P such that if x, y are in P then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, Dpolyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact with a D-polyhedron we associate a directed graph with arc-parameters, such that points in the polyhedron correspond to a vertex potentials on the graph. Alternatively, an edge-based description of the points of a D-polyhedron can be given. In this model the points correspond to the duals of generalized flows, i.e., duals of flows with gains and losses. These models can be specialized to yield distributive lattices that have been previously studied. Particular specializations are: flows of planar digraphs (Khuller, Naor and Klein), α-orientations of planar graphs (Felsner), c-orientations (Propp) and ∆-bonds of digraphs (Felsner and Knauer). As an additional application we identify a distributive lattice structure on generalized flow of breakeven planar digraphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 N ov 2 00 8 Distributive Lattices , Polyhedra , and Generalized Flow

AD-polyhedron is a polyhedron P such that if x, y are in P then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, Dpolyhedra are a unifying genera...

متن کامل

Distributive Lattices, Polyhedra, and Generalized Flow

AD-polyhedron is a polyhedron P such that if x, y are in P then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, Dpolyhedra are a unifying genera...

متن کامل

On generalized topological molecular lattices

In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices,  topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and defi...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES

The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011